17 research outputs found

    Remote sensing methods for biodiversity monitoring with emphasis on vegetation height estimation and habitat classification

    Get PDF
    Biodiversity is a principal factor for ecosystem stability and functioning, and the need for its protection has been identified as imperative globally. Remote sensing can contribute to timely and accurate monitoring of various elements related to biodiversity, but knowledge gap with user communities hinders its widespread operational use. This study advances biodiversity monitoring through earth observation data by initially identifying, reviewing, and proposing state-of-the-art remote sensing methods which can be used for the extraction of a number of widely adopted indicators of global biodiversity assessment. Then, a cost and resource effective approach is proposed for vegetation height estimation, using satellite imagery from very high resolution passive sensors. A number of texture features are extracted, based on local variance, entropy, and local binary patterns, and processed through several data processing, dimensionality reduction, and classification techniques. The approach manages to discriminate six vegetation height categories, useful for ecological studies, with accuracies over 90%. Thus, it offers an effective approach for landscape analysis, and habitat and land use monitoring, extending previous approaches as far as the range of height and vegetation species, synergies of multi-date imagery, data processing, and resource economy are regarded. Finally, two approaches are introduced to advance the state of the art in habitat classification using remote sensing data and pre-existing land cover information. The first proposes a methodology to express land cover information as numerical features and a supervised classification framework, automating the previous labour- and time-consuming rule-based approach used as reference. The second advances the state of the art incorporating Dempster–Shafer evidential theory and fuzzy sets, and proves successful in handling uncertainties from missing data or vague rules and offering wide user defined parameterization potential. Both approaches outperform the reference study in classification accuracy, proving promising for biodiversity monitoring, ecosystem preservation, and sustainability management tasks.Open Acces

    Expert knowledge for translating land cover/use maps to General Habitat Categories (GHC)

    Get PDF
    Monitoring biodiversity at the level of habitats and landscape is becoming widespread in Europe and elsewhere as countries establish international and national habitat conservation policies and monitoring systems. Earth Observation (EO) data offers a potential solution to long-term biodiversity monitoring through direct mapping of habitats or by integrating Land Cover/Use (LC/LU) maps with contextual spatial information and in situ data. Therefore, it appears necessary to develop an automatic/semi-automatic translation framework of LC/LU classes to habitat classes, but also challenging due to discrepancies in domain definitions. In the context of the FP7 BIO_SOS (www.biosos.eu) project, the authors demonstrated the feasibility of the Food and Agricultural Organization Land Cover Classification System (LCCS) taxonomy to habitat class translation. They also developed a framework to automatically translate LCCS classes into the recently proposed General Habitat Categories classification system, able to provide an exhaustive typology of habitat types, ranging from natural ecosystems to urban areas around the globe. However discrepancies in terminology, plant height criteria and basic principles between the two mapping domains inducing a number of one-to-many and many-to-many relations were identified, revealing the need of additional ecological expert knowledge to resolve the ambiguities. This paper illustrates how class phenology, class topological arrangement in the landscape, class spectral signature from multi-temporal Very High spatial Resolution (VHR) satellite imagery and plant height measurements can be used to resolve such ambiguities. Concerning plant height, this paper also compares the mapping results obtained by using accurate values extracted from LIght Detection And Ranging (LIDAR) data and by exploiting EO data texture features (i.e. entropy) as a proxy of plant height information, when LIDAR data are not available. An application for two Natura 2000 coastal sites in Southern Italy is discussed

    The Earth Observation Data for Habitat Monitoring (EODHaM) system

    Get PDF
    To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India

    Prediction of Sea Ice Motion With Convolutional Long Short-Term Memory Networks

    No full text

    Globalland30 Mapping Capacity of Land Surface Water in Thessaly, Greece

    No full text
    The National Geomatics Center of China (NGCC) produced Global Land Cover (GlobalLand30) maps with 30 m spatial resolution for the years 2000 and 2009–2010, responding to the need for harmonized, accurate, and high-resolution global land cover data. This study aims to assess the mapping accuracy of the land surface water layer of GlobalLand30 for 2009–2010. A representative Mediterranean region, situated in Greece, is considered as the case study area, with 2009 as the reference year. The assessment is realized through an object-based comparison of the GlobalLand30 water layer with the ground truth and visually interpreted data from the Hellenic Cadastre fine spatial resolution (0.5 m) orthophoto map layer. GlobCover 2009, GlobCorine 2009, and GLCNMO 2008 corresponding thematic layers are utilized to show and quantify the progress brought along with the increment of the spatial resolution, from 500 m to 300 m and finally to 30 m with the newly produced GlobalLand30 maps. GlobalLand30 detected land surface water areas show a 91.9% overlap with the reference data, while the coarser resolution products are restricted to lower accuracies. Validation is extended to the drainage network elements, i.e., rivers and streams, where GlobalLand30 outperforms the other global map products, as well

    Super-Resolved Fine-Scale Sea Ice Motion Tracking

    No full text

    Non-Destructive Characterization of Selected Types of Films and Other Layers via White Light Reflectance Spectroscopy (WLRS)

    No full text
    In this work, we consider White Light Reflectance Spectroscopy (WLRS) as an optical methodology for the accurate, fast and non-destructive measurement of film thickness in the 1 nm to the 1 mm range and for applications that include microelectronics, photonics, bioanalysis and packaging. Films to which WLRS is applicable can be either homogeneous or layered-composite ones, while thickness and composition might be fixed or varying with time; in the latter case, real-time monitoring of the kinetics of processes such as certain transitions, film dissolution and bioreactions is possible. We present the basic principles of WLRS and a selection of characteristic application examples of current interest, and we also briefly compare WLRS with alternative methods for film measurement

    Exploitation of Remote Sensing Data for Land Cover to Habitat Map Translation: A Case Study. GI_Forum 2013 – Creating the GISociety|

    No full text
    Focusing on the Food and Agricultural Organization (FAO) Land Cover Classification System (LCCS) and the recently proposed General Habitat Categories (GHCs) classifycation system, this paper illustrates how expert knowledge concerning class spatial arrangement in the scene at hand class, class phenology and class spectral signature in multitemporal EO images can fill the gaps between the two classification systems and provide LC/LU to habitat translation. An application to a Natura 2000 site in Southern Italy which includes a wetland costal area is discussed

    Exploitation of Remote Sensing Data for Land Cover to Habitat Map Translation: A Case Study. GI_Forum 2013 – Creating the GISociety|

    No full text
    Focusing on the Food and Agricultural Organization (FAO) Land Cover Classification System (LCCS) and the recently proposed General Habitat Categories (GHCs) classifycation system, this paper illustrates how expert knowledge concerning class spatial arrangement in the scene at hand class, class phenology and class spectral signature in multitemporal EO images can fill the gaps between the two classification systems and provide LC/LU to habitat translation. An application to a Natura 2000 site in Southern Italy which includes a wetland costal area is discussed

    Harmonization of the Land Cover Classification System (LCCS) with the General Habitat Categories (GHC) classification system

    No full text
    nitoring land cover and habitat change is a key issue for conservation managers because of its potential negative impact on biodiversity. The Land Cover Classification System (LCCS) and the General Habitat Categories (GHC) System have been proposed by the remote sensing and ecological research community, respectively, for the classification of land covers and habitats across various scales. Linking the two systems can be a major step forward towards biodiversity monitoring using remote sensing. The translation between the two systems has proved to be challenging, largely because of differences in definitions and related difficulties in creating one-to-one relationships between the two systems. This paper proposes a system of rules for linking the two systems and additionally identifies requirements for site-specific contextual and environmental information to enable the translation. As an illustration, the LCCS classification of the Le Cesine protected area in Italy is used to show rules for translating the LCCS classes to GHCs. This study demonstrates the benefits of a translation system for biodiversity monitoring using remote sensing data but also shows that a successful translation is often depending on the degree of ecological knowledge of the habitats and its relationship with land cover and contextual information
    corecore